google-site-verification=EmVnnySXehAfTr_j8ZJN48hwvxJtfNf80pkPX1ObQlA Fast Track News: Scientific Computing Using Python

Scientific Computing Using Python

Exam Preparation PDF
ABOUT THE COURSE:
Computation has become an essential tool in science and engineering. In this course, we introduce Python programming language, after which we will cover basics of computational methods. The students will be asked to the solution in Python, which the de facto language now. Topics to be discussed include interpolation, integration, differentiation, ODE and PDE solvers, basic linear algebra, and Monte Carlo techniques. These topics form essential computing tools for computational courses in science and engineering.

INTENDED AUDIENCE: PG students of Science and Engineering (Specially Physics, Mathematics, Mechanical, Aerospace, Computer science and Chemical Engineering). Advance UG students too can take this course.

PREREQUISITES: Basic knowledge of calculus, linear algebra, and ordinary and partial differential equations. Basic knowledge of computation is recommended.
Summary
Course Status :Ongoing
Course Type :Elective
Duration :12 weeks
Category :
  • Physics
Credit Points :3
Level :Postgraduate
Start Date :24 Jul 2023
End Date :13 Oct 2023
Enrollment Ends :07 Aug 2023
Exam Registration Ends :18 Aug 2023
Exam Date :29 Oct 2023 IST

Course layout

Week 1:
Module 1:
About Computers
Module 2:Python variables
Module 3:Python arrays

Week 2:
Module 1:
Python Control Structure
Module 2:Python functions
Module 3:Programming style

Week 3:
Module 1:Plotting
Module 2:Data input/output
Module 3:Error analysis and nondimensionalization

Week 4:
Module 1:
Lagrange Interpolation
Module 2:Splines

Week 5:
Module 1:
Numerical Integration: Newton Cotes
Module 2:Gaussian quadrature
Module 3:Multidimensional and misc integration

Week 6:
Module 1:
Differentiation
Module 2:ODE solvers: Euler method
Module 3:ODEs: Implicit schemes

Week 7:
Module 1:
ODEs: Higher-order method
Module 2:ODEs: System of eqns, Stiff equations
Module 3:Fourier Transforms

Week 8:
Module 1:
Spectral method (PDE solvers): Diffusion equation
Module 2:Spectral method: Wave and Burger eqn solver
Module 3:Spectral: Navier-Stokes eqn solver
Module 4:Spectral: Schrodinger eqn solver

Week 9:
Module 1:
Finite Difference (FD) (PDE solvers): Diffusion equation
Module 2:FD method: Wave and Burger eqn solver
Module 3:FD Method: Navier-Stokes eqn solver
Module 4:FD Method: Schrodinger eqn solver

Week 10:
Module 1:
Solving Nonlinear Equations (Root finders)
Module 2:Boundary value problems (Shooting method)
Module 3:Eigenvalue solver for diff equatons

Week 11:
Module 1:
Lapace equation solvers
Module 2:Lapace equation solvers
Module 3:Poisson equation solvers

Week 12:
Module 1:
Linear algebra: Solution of linear equations
Module 2:Linear algebra: Eigenvalues and eigenvectors
Module 3:Intro to Monte Carlo method
Module 4:Summary

Books and references

1. Practical Numerical Computing Using Python : Scientific and Engineering Applications (2021)
2.Mark Newmann: Computational Physics with Python, 2nd Ed.
3.J. M. Stewart: Python for Scientists, Cambridge U. Press (2014)
4.J. H. Ferziger, Numerical Methods for Engineering Applications, John Wiley & Sons (in TB section).
5.M. Lutz, Learning Python 5th Edition, O’Reilly Media (2013)



Exam Preparation PDF

Part : 1
   
Part : 2
   
Part : 3
 

No comments:

Post a Comment

April Week 2 || Lab 2 || Troubleshooting Data Models in Looker

  CREATE NEW FILE NAME: user_order_lifetime view: user_order_lifetime { derived_table: { sql: SELECT order_items.user_id as us...