ABOUT THE COURSE:
Computation has become an essential tool in science and engineering. In this course, we introduce Python programming language, after which we will cover basics of computational methods. The students will be asked to the solution in Python, which the de facto language now. Topics to be discussed include interpolation, integration, differentiation, ODE and PDE solvers, basic linear algebra, and Monte Carlo techniques. These topics form essential computing tools for computational courses in science and engineering.
INTENDED AUDIENCE: PG students of Science and Engineering (Specially Physics, Mathematics, Mechanical, Aerospace, Computer science and Chemical Engineering). Advance UG students too can take this course.
PREREQUISITES: Basic knowledge of calculus, linear algebra, and ordinary and partial differential equations. Basic knowledge of computation is recommended.
Summary
Course Status : | Ongoing |
Course Type : | Elective |
Duration : | 12 weeks |
Category : |
|
Credit Points : | 3 |
Level : | Postgraduate |
Start Date : | 24 Jul 2023 |
End Date : | 13 Oct 2023 |
Enrollment Ends : | 07 Aug 2023 |
Exam Registration Ends : | 18 Aug 2023 |
Exam Date : | 29 Oct 2023 IST |
Course layout
Week 1:
Module 1:About Computers
Module 1:About Computers
Module 2:Python variables
Module 3:Python arrays
Week 2:
Module 1:Python Control Structure
Module 1:Python Control Structure
Module 2:Python functions
Module 3:Programming style
Week 3:
Module 1:Plotting
Module 1:Plotting
Module 2:Data input/output
Module 3:Error analysis and nondimensionalization
Week 4:
Module 1:Lagrange Interpolation
Module 1:Lagrange Interpolation
Module 2:Splines
Week 5:
Module 1:Numerical Integration: Newton Cotes
Module 1:Numerical Integration: Newton Cotes
Module 2:Gaussian quadrature
Module 3:Multidimensional and misc integration
Week 6:
Module 1:Differentiation
Module 1:Differentiation
Module 2:ODE solvers: Euler method
Module 3:ODEs: Implicit schemes
Week 7:
Module 1:ODEs: Higher-order method
Module 1:ODEs: Higher-order method
Module 2:ODEs: System of eqns, Stiff equations
Module 3:Fourier Transforms
Week 8:
Module 1:Spectral method (PDE solvers): Diffusion equation
Module 1:Spectral method (PDE solvers): Diffusion equation
Module 2:Spectral method: Wave and Burger eqn solver
Module 3:Spectral: Navier-Stokes eqn solver
Module 4:Spectral: Schrodinger eqn solver
Week 9:
Module 1:Finite Difference (FD) (PDE solvers): Diffusion equation
Module 1:Finite Difference (FD) (PDE solvers): Diffusion equation
Module 2:FD method: Wave and Burger eqn solver
Module 3:FD Method: Navier-Stokes eqn solver
Module 4:FD Method: Schrodinger eqn solver
Week 10:
Module 1:Solving Nonlinear Equations (Root finders)
Module 1:Solving Nonlinear Equations (Root finders)
Module 2:Boundary value problems (Shooting method)
Module 3:Eigenvalue solver for diff equatons
Week 11:
Module 1:Lapace equation solvers
Module 1:Lapace equation solvers
Module 2:Lapace equation solvers
Module 3:Poisson equation solvers
Week 12:
Module 1:Linear algebra: Solution of linear equations
Module 1:Linear algebra: Solution of linear equations
Module 2:Linear algebra: Eigenvalues and eigenvectors
Module 3:Intro to Monte Carlo method
Module 4:Summary
Books and references
1. Practical Numerical Computing Using Python : Scientific and Engineering Applications (2021)
2.Mark Newmann: Computational Physics with Python, 2nd Ed.
3.J. M. Stewart: Python for Scientists, Cambridge U. Press (2014)
4.J. H. Ferziger, Numerical Methods for Engineering Applications, John Wiley & Sons (in TB section).
5.M. Lutz, Learning Python 5th Edition, O’Reilly Media (2013)
3.J. M. Stewart: Python for Scientists, Cambridge U. Press (2014)
4.J. H. Ferziger, Numerical Methods for Engineering Applications, John Wiley & Sons (in TB section).
5.M. Lutz, Learning Python 5th Edition, O’Reilly Media (2013)
Exam Preparation PDF
Part : 2
Part : 3
No comments:
Post a Comment